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Abstract

Systems Biology defined as “the science of discovering, modelling, understanding and ultimately engineering at 
the molecular level the dynamic relationships between the biological molecules that define living organisms” (Leroy 
Hood, Inst. Systems Biology, Seattle) is one of the modern tools which uses advanced mathematical simulation models 
for in-silico design of micro-organisms that possess specific and desired functions and characteristics. The present work 
makes a short review of the (bio) chemical engineering principles and deterministic modelling rules used by the Systems 
Biology for modelling cellular metabolic processes. This involves application of the classical modelling techniques (mass 
balance, thermodynamic principles), algorithmic rules, and nonlinear system control theory. The metabolic pathway 
representation with continuous and/or stochastic variables remains the most adequate and preferred representation 
of the cell processes, the adaptable-size and structure of the lumped model depending on available information and the 
utilisation scope.

Keywords: Systems biology; Cell metabolism modelling; Deterministic modelling; Gene expression modelling; 
Genetic regulatory circuits

Abbreviations: GRC: Genetic Regulatory Circuits; TF-s: Transcription Factors; VVWC: Whole-Cell-Variable-Volume; 
CGE: Gene Circuit Engineering; GERM: Gene Expression Regulatory Modules; CVWC: Constant Volume Whole-Cell; ODE: 
Ordinary Differential Equations; QSS: Quasi Steady-state; G: Generic Gene; P: Generic Protein; M: mRNA; CCM: Central 
Carbon Metabolism; GMO: Genetic Modified Organisms; P.I: Performance Indices
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Introduction

Living cells are evolutionary, auto-catalytic, self-adjustable 
structures able to convert raw materials from environment 
into additional copies of themselves. Living cells are organized, 
self-replicating, evolvable, and responsive biological systems 
to environmental stimuli. The structural and functional cell 
organization, including components and reactions, is extremely 
complex, involving O(103-4) components, O(103-4) transcription 
factors (TF-s), activators, inhibitors, and at least one order 
of magnitude higher number of (bio)chemical reactions, all 
ensuring a fast adaptation of the cell to the changing environment 
[1-3]. Relationships between structure, function and regulation 
in complex cellular networks are better understood at a low 
(component) level rather than at the highest-level [4].

Cell regulatory and adaptive properties are based on 
homeostatic mechanisms, which maintain quasi-constant key-
species concentrations and output levels, by adjusting the 
synthesis rates, by switching between alternative substrates, 
or development pathways. Cell regulatory mechanisms include 
allosteric enzymatic interactions and feedbacks in gene 
transcription networks, metabolic pathways, signal transduction 
and other species interactions [5]. In particular, protein synthesis 
homeostatic regulation includes a multi-cascade control of the 
gene expression with negative feedback loops and allosteric 
adjustment of the enzymatic activity [1,6-8]. 

Cells have a hierarchic organization (structural, functional, 
and temporal, Figure 1):

Figure 1: The hierarchical organization of living cells.

The structural hierarchy 

Includes all cell components from simple molecules 
(nutrients, saccharides, fatty acids, aminoacids, simple 
metabolites), then macromolecules or complex molecules (lipids, 
proteins, nucleotides, peptidoglycans, coenzymes, fragments 
of proteins, nucleosides, nucleic acids, intermediates), and 
continuing with well-organized nano-structures (membranes, 
ribosomes, genome, operons, energy harnessing apparatus, 
replisome, partitioning apparatus, Z-ring, etc. [9]). To ensure 
self-replication of such a complex structure through enzymatic 
metabolic reactions using nutrients (Nut), metabolites (Met), and 
substrates (glucose/fructose, N-source, dissolved oxygen, and 

micro-elements), all the cell components should be associated 
with specific functions into the cell, following a 

The functional hierarchy 

According to the species structure; e.g. sources of energy 
(ATP, ADP, AMP), reaction intermediates, TF-s. [10] Provided 
examples of biological systems that have evolved in a modular 
fashion and, in different contexts, perform the same basic 
functions. Each module, grouping several cell components and 
reactions, generates an identifiable function (e.g. regulation of 
a certain reaction, of enzymes’ activity, gene expression, etc.). 
More complex functions, such as regulatory networks, synthesis 
networks, or metabolic cycles can be built-up using the building 
blocks rules of the Synthetic Biology [11]. This is why, the 
modular GRC dynamic models, of an adequate mathematical 
representation, seem to be the most comprehensive mean for a 
rational design of the regulatory GRC with desired behavior [12]. 
By chance, such a building blocks cell structure is computationally 
very tractable when developing cell reduced dynamic models, by 
defining and characterizing various metabolic sub-processes, 
such as: regulatory functions of the gene expression regulatory 
modules (GERM) and of genetic regulatory circuits (GRC), 
enzymatic reaction kinetics, energy balance functions for 
ATP/ADP/AMP renewable system, electron donor systems 
of the NADH, NADPH, FADH, FADH2 renewable components, 
hydrophobic effects; or functions related to the metabolism 
regulation (regulatory components/reactions of the metabolic 
cycles, gene transcription and translation); genome replication/
gene expression regulation (protein synthesis, storage of the 
genetic information, etc.), functions for cell cycle regulation 
(nucleotide replication and partitioning, cell division). In the case 
of modelling GRC-s, by chance, the number of interacting GERM-s 
is limited, one gene interacting with no more than 23-25 [13].

The Time Hierarchy

The wide-separation of time constants of the metabolic 
reactions in the cell systems is called time hierarchy. Thus, the 
reactions are separated in slow and fast according to their time 
constant; in fact, only fast and slow reactions are of interest, while 
the very slow processes are neglected or treated as parameters 
(such as the external nutrient or metabolite evolution). Aggregate 
pools (combining fast reactions) are usually used in building-up 
cell dynamic models in a way that intermediates are produced in a 
minimum quantity and consumed only by irreversible reactions. 
All cell processes obey a certain succession of events, while 
stationary or dynamic perturbations are treated by maintaining 
the cell components homeostasis (steady-state levels), and by 
minimizing the recovering or transition times after perturbations.

A central part of such cell models concerns self-regulation of 
the metabolic processes via GRC-s. Consequently, one particular 
application of such dynamic deterministic cell models is the study 
of GRC-s, in order to predict ways by which biological systems 
respond to signals, or environmental perturbations. The emergent 
field of such efforts is the so-called ‘gene circuit engineering’ (GCE) 
and a large number of examples have been reported with in-silico 
re-creation of GRC-s conferring new properties/functions to the 
mutant cells (i.e. desired ‘motifs’ in response to external stimuli) 
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[1,14]. Simulation of gene expression and of GRC makes possible 
in-silico design of organisms that possess specific and desired 
functions. By inserting new GRC-s into organisms, one may create 
a large variety of mini-functions/tasks (or desired ‘motifs’) in 
response to external stimuli. 

“With the aid of recombinant DNA technology, it has become 
possible to introduce specific changes in the cellular genome. 
This enables the directed improvement of certain properties 
of microorganisms, such as the productivity, which is referred 
to as Metabolic Engineering [15-17]. This is potentially a 
great improvement compared to earlier random mutagenesis 
techniques, but requires that the targets for modification are 
known. The complexity of pathway interaction and allosteric 
regulation limits the success of intuition-based approaches, 
which often only take an isolated part of the complete system 
into account. Mathematical models are required to evaluate the 
effects of changed enzyme levels or properties on the system as a 
whole, using metabolic control analysis or a dynamic sensitivity 
analysis” [18]. In this context, GRC dynamic models are powerful 
tools in developing re-design strategies of modifying genome 
and gene expression seeking for new properties of the mutant 
cells in response to external stimuli [1]. Examples of such GRC 
modulated functions include:

o  Toggle-switch, i.e. mutual repression control in two gene 
expression modules, and creation of decision-making branch 
points between on/off states according to the presence of certain 
inducers.

o   Hysteretic GRC behaviour that is a bio-device able to behave 
in a history-dependent fashion, in accordance to the presence of a 
certain inducer in the environment.

o  GRC oscillator producing regular fluctuations in network 
elements and reporter proteins, and making the GRC to evolve 
among two or several quasi-steady-states.

o Specific treatment of external signals by controlled 
expression such as amplitude filters, noise filters or signal/
stimuli amplifiers.

o    GRC signalling circuits and cell-cell communicators, acting 
as ‘programmable’ memory units.

The development of dynamic models on a deterministic 
basis to adequately simulate in detail the cell metabolism self-
regulation, cell growth, and replication for such an astronomical 
cell metabolism complexity is practical impossible due to lack of 
structured information and computational limitations. A review 
of some trials is presented by Styczynski & Stephanopoulos [19]. 

In spite of such tremendous modelling difficulties, 
development of reduced dynamic models to adequately 
reproduce such complex synthesis related to the central carbon 
metabolism (Figure 2) [18-21], but also to the genetic regulatory 
system [20] tightly controlling the metabolic processes reported 
significant progresses over the last decades in spite of the 
lack of structured experimental kinetic information. In spite 
of being rather based on sparse information from various 
sources and unconventional identification /lumping algorithms 

[1,8], such structured deterministic kinetic models have been 
proved to be extremely useful for in-silico design of novel 
GRC-s conferring new properties/functions to the mutant cells, 
that is desired ‘motifs’ in response to the external stimuli [1]. 

Figure 2: KEGG [34] result: the central carbon metabolic 
fluxes (metabolic pathway map) of Mycobacterium 
smegmatis MC2155 (after [2]).

The scope of this paper is to review some novel concepts and 
(bio) chemical engineering rules applied to modular modelling 
of gene expression regulatory modules (GERM), GRC-s and other 
metabolic processes on a deterministic basis by using continuous 
variable dynamic models under the novel “whole-cell-variable-
volume” (VVWC) modelling framework [1].

An Emergent Border Field: Systems Biology

Efforts to understand and to develop mathematical models 
on a mechanistic (deterministic) basis of the cell metabolic 
processes started many decades ago, but with modest results. 
Studies on this subject were amplified after the famous question 
formulated by the distinguished physicist Erwin Schroedinger in 
his famous lecture at Trinity College Dublin on 1943, “What is 
life?”, and after the famous cryptanalyst Alan Turing published 
on 1952 his paper “The chemical basis of morphogenesis”, in 
Philosophical Transactions of the Royal Society of London (Series 
B, No. 641, Vol. 237) proving the (bio) chemical reaction basis 
of metabolic processes. Notable progresses in the structured 
modelling of GRC and in the study of their regulatory properties 
have been reported after publication of the book of “General 
System Theory” by Ludwig von Bertalanffy on 1968.

Amazing, but the first pioneers in dynamic modelling of 
biological systems were not the (bio)chemical engineers which 
are better trained to ‘translate’ from the ‘language’ of molecular 
biology to that of mechanistic (bio)chemistry, by preserving the 
structural hierarchy and component functions. The first dynamic 
models of some cell processes have been reported by the 
electronists on 1952 [22,23]. Later, such ‘electronic circuits-like’ 
models have been extensively used to understand intermediate 
levels of regulation, but they failed to reproduce in detail 
molecular interactions with slow and continuous responses 
to perturbations and, eventually, they have been abandoned. 
However, the electronists underlined the main characteristics of 
the cell systems, which must be included in any simulation model: 
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o The dynamic character of species interactions and 
processes; 

o    The feedback character of processes ensuring their 

o    Optimal regulation, with 

o     Consuming minimum of resources (nutrients/substrates), 
and cell energy, but ensuring maximum reaction rates. 

All these cell metabolic characteristics will be accounted in 
all the subsequent cell in-silico simulators based on extended 
mathematical models. All these metabolic process characteristics 
are also in the agreement of the Darwin theory “Living organisms 
have evolved to maximize their chances for survival; It explains 
structures, behaviours of living organisms.”

Figure 3: On 2000 the human genome has been deciphered.

The modelling efforts have intensified a lot after 2000 when 
the human genome has been deciphered (Figure 3), being proved 
that the difficult task to model and design complex biological 
circuits with a building blocks strategy can be accomplished by 
properly defining the cell basic components, functions, and 
structural organisation. Because many cell regulatory systems are 
organized as “modules” [24], it is natural to model GRC-s using a 
modular approach [1]. Further analyses including engineered 
GRC-s can lead to predict/design desirable cell characteristics, 
that is [25]: a tight control of gene expression, i.e. low-expression 
in the absence of inducers and accelerated expression in the 
presence of specific external signals; a quick dynamic response 
and high sensitivity to specific inducers; GRC robustness, i.e. a low 
sensitivity vs. undesired inducers (external noise). Through the 
combination of induced motifs in modified cells one may create 
potent applications in industrial, environmental, and medical 
fields (e.g. biosensors, gene therapy). Valuable implementation 
tools of the design GRC in real cells have been reported over the 
last years [11]. 

The emergent field of Synthetic Biology [26] “interpreted 
as the engineering-driven building of increasingly complex 
biological entities” [11], aims at applying engineering principles 
of systems design to biology with the idea to produce predictable 
and robust systems with novel functions in a broad area of 
applications [11,27] such as therapy of diseases (gene therapy), 

design of new biotechnological processes, new devices based 
on cell-cell communicators, biosensors, etc. By assembling 
functional parts of an existing cell, such as promoters, ribosome 
binding sites, coding sequences and terminators, protein 
domains, or by designing new GRC-s on a modular basis, it is 
possible to reconstitute an existing cell or to produce novel 
biological entities with new properties. 

Encouraging results have been reported for the design of 
artificial gene networks for reprogramming signalling pathways, 
for refactoring of small genomes, or for re-design of metabolic 
fluxes with using switching genes [1]. By assembling functional 
parts of an existing cell, such as promoters, ribosome binding 
sites, coding sequences and terminators, protein domains or by 
designing new gene regulatory networks on a modular basis, it is 
possible to reconstitute an existing cell (the so-called “integrative 
understanding”) or to produce novel biological entities with 
modified characteristics [11]. 

To help the efforts of the Synthetic Biology to in-silico 
design genetic modified micro-organisms (GMO) with desired 
characteristics, the emergent border field of the Systems Biology 
has been very quickly developed, based on using mathematical 
tools and numerical calculus, as well as (bio) chemical engineering 
concepts and tools [1], together with the control theory of the 
nonlinear systems to characterize the kinetics and self-regulation 
of the cell metabolic processes. 

In the Synthetic Biology, the genetic components may be 
considered as “building blocks” because they may be extracted, 
replicated, altered and spliced into the new biological organisms. 
The Synthetic Biology is in direct connection with the Systems 
Biology focus on the cell organization, the former being one of the 
main tools for the in-silico design of GMO-s. In such a topics, the 
metabolism characterization by means of lumped but adequate 
cell models plays a central role, as underlined by the following 
definition “Systems Biology is the science of discovering, 
modelling, understanding and ultimately engineering at the 
molecular level the dynamic relationships between the biological 
molecules that define living organisms” (Leroy Hood, president 
Institute for Systems Biology, Seattle, USA, cited by Banga, 2008). 
Beside the Institute for Systems Biology in Seattle, a large number 
of research groups appeared worldwide based on the increased 
computing power of the new generations of computers [28-32].

Various definitions of Systems Biology exist in the dedicated 
literature [3]:

o   “The science of discovering, modelling, understanding 
and ultimately engineering at the molecular level the dynamic 
relationships between the biological molecules that define living 
organisms” (Leroy Hood; Inst. Systems Biology, Seattle).

o   System Biology is a comprehensive quantitative analysis 
of the manner in which all the components of a biological system 
interact functionally over time (Alan Aderem, Director Inst. 
Systems Biology, Seattle).

o  Perhaps surprisingly, a concise definition of Systems 
Biology that most of us can agree upon has yet to emerge (Ruedi 
Aebersold, Inst. Systems Biology, Seattle).
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o   “The real advance in the application of systems theory to 
biology will come about only when the biologists start asking 
questions which are based on the system theoretic concepts 
rather than using these concepts to represent in still another 
way the phenomena which are already explained in terms of 
biophysical or biochemical principles. Then we will [...] have [...] a 
field of Systems Biology” (Mike Mesarovic in System Theory and 
Biology, 1968).

o   “The discipline of systems biology aims at understanding 
the dynamic interaction between components of a living system 
or between living systems.” (http://www.erasysbio.net/);

o  “Systems biology is an approach by which biological 
questions are addressed through integrating experiments with 
computational modelling, simulation and theory, in iterative 
cycles.” (http://www.erasysbio.net/);

o   “Modelling is not the final goal, but is a tool to increase 
understanding of the system, to develop more directed 
experiments and finally allow predictions.” (http://www.
erasysbio.net/)

In the “post-genomic era” a large number of Systems Biology 
projects have been developed leading to simulate parts of cell 
metabolism, such as [8]: EcoCyc [33] database; KEGG [34] 
database; ‘Whole-Cell’ models (cell organization and dynamics):

a. E-Cell: (compartments, compounds, genes, reactions [35])

b. V-Cell: (model, geometry & applications, biological 
interface [36])

c.  M-Cell: (stochastic simulator of some cell sub-systems 
[37])

d.    A-Cell (‚electrical circuit‘ models [38])

e.  Silicon-Cell: (computer replica of cell processes to be 
linked [39])

f.    Specific programming languages: SBML, JWS [40], etc.

g.   Single cell growth (e.g. Escherichia coli, Haemophilus 
influenzae, Mycoplasma genitalium, yeast, …)

h.   Model metabolic oscillations (red-blood-cell synthesis, 
glycolysis, TCA cycle, oxidative phosphorylation, key species 
oscillations, etc.)

i.	 Metabolic control of protein synthesis regulation 
(GERM, GRC)

j.	 Modelling the cell cycle

k.	 Modelling the drug release and cell-drug interactions

l.	 Modelling cellular communications, neuronal 
transmission

m.	 Analysis of ‘logical essence’ of life (life minimal 
requirements) 

Among the milestone works in Systems Biology it is to 
mention the contributions of some of their pioneers: Heinrich 
& Schuster [28], Torres & Voit [29], Bowden [30], Brazhnik [31], 
etc. The number of published papers in the Systems Biology area 

increases with two orders of magnitude from 2000 to 2007, and 
it is still exponentially increasing, most of them being founded by 
programs of the European Science Foundation (Figure 5).

Figure 4: Quoted from the obituary of R Heinrich [3].

Here it is to mention the huge contributions of Reinhart 
Heinrich (1946-2006) in the field of modelling the regulation 
of cellular systems [28]. So that, at his obituary on 2006, M.W. 
Kirschner (Nature 444, 700) said (Figure 4): “If Systems Biology 
has heroes, one of them is Reinhart Heinrich…..”

Figure 5: Systems Biology publications and EU programs 
after 2000.

Tremendous applications of systems biology have been 
reported over the next decades in the area of [41]:

Designing mutant, cloned cells 
with desired ‘motifs’

Cell biology

Genetics biology or genetics Food science
Biotechnology, Bioengineering Immunology

Biomedical engineering Molecular biology
Biochemistry Biodiversity

Agricultural biology and Ecology Bioinformatics
Biophysics

So that, 50 years after the first reported models of living cells 
[22,23], the optimistic researchers advanced very ambitious 
targets, such as “Modeling the heart–from genes to cells to the 
whole organ” [42].

As in all scientific controversies, the are also skeptic opinions, 
such as [3]

In spite of a full mapping of the human genome which yielded 
a code of three billion letters, we are still far from a satisfactory 
answer to the question formulated by the distinguished physicist 
Erwin Schroedinger in his famous lecture at Trinity College Dublin 
in 1943: “What is life?”. However, two important observations 
were made by the world renowned physiologist Denis Noble in 
his book” The music of life”, 2006: 
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a.   “We must move away from our obsession with genes alone. 
We must look not at one level, but at the interaction of processes 
at various levels, from the realm of Systems Biology.

b.  The reductionist approach of molecular biology has proved 
itself immensely powerful. But DNA isn’t life.”

i.   These Systems Biology tools they really work? 

ii. (http://www.systemsbiology.org/Systems_Biology_in_
Depth). Some pessimists charge that systems biology is nothing 
more than “a fashion fad” that will pass once the hype dies 
down. Others maintain that systems biology is, in essence, a 
“repackaging of established concepts and methodologies” under 
a new description.

iii.	 And a third camp endorses the idea of systems biology 
as an enticing and powerful new discipline but thinks that it’s 
“premature” to be considered.

(Bio) Chemical Engineering Deterministic Approach: 
Rules, Advantages and Limitations

A review of mathematical model types used to describe 
metabolic processes is presented in [8,19,32]. Each model 
type presents advantages but also limitations. To model such 
a complex metabolic regulatory mechanisms at a molecular 
level, two main approaches have been developed over decades: 
structure-oriented analysis, and dynamic (kinetic) models [4]. 
Each theory presents strengths and shortcomings in providing 
an integrated predictive description of the cellular regulatory 
network. 

Structure-oriented analyses or topological models ignore 
some mechanistic details and the process kinetics, and use 
the only network topology to quantitatively characterize to 
what extent the metabolic reactions determines the fluxes and 
metabolic concentrations [28]. The so-called ‘metabolic control 
analysis’ (MCA) is focus on using various types of sensitivity 
coefficients (the so-called ‘response coefficients’), which 
are quantitative measures of how much a perturbation (an 
influential variable) affects the cell-system states [e.g. reaction 
rates, metabolic fluxes (stationary reaction rates), species 
concentrations] around the steady-state (QSS). The systemic 
response of fluxes or concentrations to perturbation parameters 
(i.e., the ‘control coefficients’), or of reaction rates to perturbations 
(i.e. the ‘elasticity coefficients’) have to fulfil the ‘summation 
theorems’, which reflect the network structural properties, and 
the ‘connectivity theorems’ related to the properties of single 
enzymes vs. the system behaviour. 

Originally, MCA has been introduced by Kacser & Burns [8], 
Heinrich & Rapoport [8] to quantify the rate limitation in complex 
enzymatic systems. MCA have been followed by a large number 
of improvements, mainly dealing with the control analysis of the 
stationary states, by pointing-out the role of particular reactions 
and cell components in determining certain metabolic behaviour. 
Successive extensions of such definitions allow [8]: to study any 
limit set for non-steady/time-dependent conditions [43,44]; 
the flux balance analysis and optimization (FBA); elementary 
mode analysis (EMA); dynamic flux balance analysis (DFBA); 

extreme pathway analysis (ExPA); constrained based modelling 
of metabolic network (CBM).

MCA methods are able to efficiently characterize the metabolic 
network robustness and functionality, linked with the cell 
phenotype and gene regulation. MCA allows a rapid evaluation of 
the system response to perturbations (especially of the enzymatic 
activity), possibilities of control and self-regulation for the 
whole path or some subunits. Functional subunits are metabolic 
subsystems, called ‘modules’, such as amino acid or protein 
synthesis, protein degradation, mitochondria metabolic path, 
etc [6]. Because the living cells are self-evolutive systems, new 
reactions recruited by cells together with enzyme adaptations 
can lead to an increase in the cell biological organisation and 
to optimal performance indices. When constructing methods 
to optimize evolutive metabolic systems, MCA concepts and 
appropriate performance criteria have been used, leading to: 
maximize reaction rates and steady-state fluxes; minimize 
metabolic intermediate concentrations; minimize transient 
times; optimise the reaction stoichiometry (network topology); 
maximize thermodynamic efficiency. All these objectives 
are subjected to various mass balance, thermodynamic, and 
biological constraints [28]. However, by not accounting for 
the system dynamics, and grounding the analysis on the linear 
system theory, topological methods presents inherent limitations 
(see for instance some violations of stoichiometric constraints 
discussed by Atauri et al. [45], or the use of modified control 
coefficients [46]). 

Classical approach to develop deterministic dynamic models 
is based on a hypothetical reaction mechanism, kinetic equations, 
and known stoichiometry. This route meets difficulties when 
the analysis is expanded to large-scale metabolic networks, 
because the necessary mechanistic details and standard 
kinetic data to derive the rate constants are difficult to be 
obtained. However, advances in genomics, transcriptomics, 
proteomics, and metabolomics, lead to a continuous expansion of 
bioinformatic databases, while advanced numerical techniques, 
non-conventional estimation procedures, and massive software 
platforms reported progresses in formulating such reliable 
cell models. Valuable structured dynamic models, based on cell 
biochemical mechanisms, have been developed for simulating 
various (sub) systems (see chap. “An emergent border field: 
Systems Biology”).

To model in detail the cell process complexity is a challenging 
and difficult task. The large number of inner cell species, complex 
regulatory chains, cell signalling, motility, organelle transport, 
gene transcription, morphogenesis and cellular differentiation 
cannot easily be accommodated into existing computer 
frameworks. Inherently, any model represents a simplification 
of the real phenomenon; while relevant model parameters are 
estimated based on the how close the model behaviour is to the 
real cell behaviour. A large number of software packages have 
been elaborated allowing the kinetic performance of enzyme 
pathways to be represented and evaluated quantitatively 
[8,47]. Oriented and unified programming languages have been 
developed (see SBML, JWS, see chap. “An emergent border field: 
Systems Biology”) to include the bio-system organization and 
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complexity in integrated platforms for cellular system simulation 
(E-Cell, V-Cell, M-Cell, A-Cell, see chap. “An emergent border field: 
Systems Biology”). Such integrated simulation platforms tend to 
use a large variety of biological databanks including enzymes, 
proteins and genes characteristics together with metabolic 
reactions (CRGM-database [48]; NIH-database [49]).

From the mathematical point of view, various structured 
(mechanism-based) dynamic models have been proposed to 
simulate the metabolic processes and their regulation, accounting 
for continuous, discrete, and/or stochastic variables, in a 
modular construction, ‘circuit-like’ network, or compartmented 
simulation platforms [5,8,50]. Such models can include:

(i)  Boolean (discrete) variables; such a topological structure 
is displayed in the Figure 6 [50]; due to the very large number 
of states O(103–104), and O(103) of TFs involved in the gene 
expression, such GRC models are organized in clusters, modules, 
of a multi-layer organization.

Figure 6: Boolean topological representation of GRC [50].

(ii)   Continuous variable models; among other advantages 
such models can perfectly represent the cell response to 
continuous perturbations, and their structure and size can 
be easily adapted based on the available-omics information 
[8,28,32,50,51].

(iii)    Stochastic variable models [52-54];

(iv)   Mixed variable models [50]. 

In the Boolean approach, variables can take only discrete 
values. Even if less realistic, such an approach is computationally 
tractable, involving networks of genes that are either “on” or “off” 
(e.g. a gene is either fully expressed or not expressed at all; Figure 
6) according to simple Boolean relationships, in a finite space. 
Such a coarse representation is used to obtain a first model for 
a complex biosystem including a large number of components, 

until more detailed data on process dynamics become available. 
‘Electronic circuits’ structures (see an example in Figure 7) 
have been extensively used to understand intermediate levels 
of regulation, but they cannot reproduce in detail molecular 
interactions with slow and continuous responses to perturbations.

Figure 7: An ‘electronic circuit-like’ representation of a 
GRC. A human cancer cell pathway (from http://www.bio-
itworld.com/archive/111202/virtual.html)

Metabolic processes at a low (molecular)-level are generally 
better clarified. Based on that, conventional dynamic models, 
based on ordinary differential (ODE) species mass balance, with 
a mechanistic (deterministic) description of reactions tacking 
place among individual species (proteins, mRNA, intermediates, 
etc.) have been proved to be a convenient route to analyse 
continuous metabolic/regulatory processes and perturbations. 
When systems are too large or poorly understood, coarser and 
more phenomenological kinetic models may be postulated (e.g. 
protein complexes, metabolite channelling, etc.). In dynamic 
deterministic models, usually only essential reactions are 
retained, the model complexity depending on the measurable 
variables and available information. To reduce the structure 
of such a model, an important problem to be considered is the 
distinction between the qualitative and quantitative process 
knowledge, stability and instability of involved species, the 
dominant fast and slow modes of process dynamics, reaction 
time constants, macroscopic and microscopic observable 
elements of the state vector. Such kinetic models can be useful 
to analyse the regulatory cell-functions, both for stationary 
and dynamic perturbations, to model cell cycles and oscillatory 
metabolic paths [21] and to reflect the species interconnectivity 
or perturbation effects on cell growth [1,55]. Mixtures of ordinary 
differential equation (ODE) kinetic models with discrete states 
(i.e. ‘continuous logical’ models) and of continuous ODE kinetics 
with stochastic terms can lead to promising mixed models able to 
simulate both deterministic and non-deterministic cell processes 
[50]. Representation of metabolic process kinetics is made 
usually by using rate expressions of extended Michaelis-Menten 
or Hill type [20,21,55].

Stochastic models replace the ‘average’ solution of continuous-
variable ODE kinetics (e.g. species concentrations) by a detailed 
random-based simulator accounting for the exact number of 
molecules present in the system. Because the small number of 
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molecules for a certain species is more sensitive to stochasticity 
of a metabolic process than the species present in larger amounts, 
simulation via continuous models sometimes can lack of enough 
accuracy for random process representation (as cell signalling, 
gene mutation, etc.). Monte Carlo simulators are used to predict 
individual species molecular interactions, while rate equations 
are replaced by individual reaction probabilities, and the model 
output is stochastic in nature. Even if the required computational 
effort is extremely high, stochastic representation is useful 
to simulate the cell system dynamics by accounting for a large 
number of species of which spatial location is important [52-54]. 

By applying various modelling routes, successful structured 
models have been elaborated to simulate various regulatory 
mechanisms [8,52,56-59]. In fact, as mentioned by Crampin & 
Schnell [5], a precondition for a reliable modelling is the correct 
identification of both topological and kinetic properties. As few 
(kinetic) data are present in a standard form, non-conventional 
estimation methods have been developed, by accounting for 
various types of information (even incomplete) and global cell 
(regulatory) properties [5,61]. 

Development of deterministic dynamic models to adequately 
reproduce such complex synthesis related to the central carbon 
metabolism [20,21] but also the genetic regulatory system 
tightly controlling such metabolic processes reported significant 
progresses over the last decades in spite of the lack of structured 
experimental kinetic information, being rather based on 
sparse information from various sources and unconventional 
identification/lumping algorithms [1,8,61].

Reduction in the model structure (via lumping of species, and 
reactions) is necessary due to [1]:

a. The high complexity of cell metabolic processes vs. 
available data

b.   Large number of species, reactions, transport parameters, 
and interaction s

c.   low data observability & reproducibility

d.   Metabolic process variability 

e.    Interpretable representation of cell complexity

f.  Requirement to get quick simulations of cell behavior 
under various environmental conditions

g. Computational tractability and easier application of 
algorithmic rules from (bio)chemical engineering and numerical 
calculus

However, a trade off between model complexity and adequacy 
must be maintained [62] to use such models for the in-silico 
design GMO, by in-silico re-programming the cell metabolism, or 
by optimal cell cloning [69,70]. Application of systematic math-
lumping rules to metabolic processes must account for physical 
significance of lumps, species interactions, and must preserve 
the systemic/holistic properties of the metabolic pathway. The 
only separation of components and reactions based on the time-
constant scale (as in the modal analysis of the Jacobian of the ODE 
model; the ODE model Jacobian being defined as the derivatives 

of model functions in respect to model states, that is species 
concentrations the in cell metabolic models) has been proved to 
be insufficient [55,61]. 

The work with reduced kinetic models of cell syntheses and 
GRC-s, even if computationally very convenient, presents some 
inherent disadvantages, that is: multiple reduced model structures 
might exist difficult to be discriminated; a loss of information is 
reported on certain species, on some reaction steps, and a loss in 
system flexibility (given by the no. of intermediates and species 
interactions); a loss in the model prediction capabilities; a lack 
of physical meaning of some model parameters/constants thus 
limiting its robustness and portability; alteration of some cell/
GRC holistic properties (stability, multiplicity, sensitivity). 

Mathematical Modeling in Molecular Biology Using 
(Bio) Chemical Engineering Tools 

Even if complicated and, often over parameterized, the 
continuous variable dynamic deterministic ODE models of 
GRC-s present a significant number of advantages, being able 
to reproduce in detail the molecular interactions, the cell slow 
or fast continuous response to exo/endo-geneous continuous 
perturbations [8,19]. Besides, the use of ODE kinetic models 
presents the advantage of being computationally tractable, 
flexible, easily expandable, and suitable to be characterized using 
the tools of the nonlinear system theory [3,28], accounting for the 
regulatory system properties, that is: dynamics, feedback/feed 
forward, and optimality. And, most important, such ODE kinetic 
modelling approach allows using the strong tools of the classical 
(bio) chemical engineering modelling, that is [62]: 

i.  Molecular species conservation law (stoichiometry 
analysis; species differential mass balance set); 

ii.    Atomic species conservation law ( atomic species mass 
balance); 

iii.     Thermodynamic analysis of reactions (that is quantitative 
assignment of reaction directionality) [63]; 

iv.  Set equilibrium reactions; Gibbs free energy balance 
analysis set cyclic reactions; find species at quasi-steady-state; 
improved evaluation of steady-state flux distributions that 
provide important information for metabolic engineering [64], 
allowing application of ODE model species and/or reaction 
lumping rules [61].

The ODE deterministic models have been developed in two 
alternatives: 

o     The default Constant Volume Whole-Cell (CVWC) classical 
continuous variable ODE dynamic models, which do not explicitly 
consider the cell volume exponential increase during the cell 
growth.

When the continuous variable CVWC dynamic models are 
used to model the cell enzymatic processes, the default-modelling 
frame work eq. (1) is that of a constant volume and, implicitly 
of a constant osmotic pressure, eventually accounting for the 
cell-growing rate as a pseudo-‘decay’ rate of key-species (often 
lumped with the degrading rate) in a so-called ‘diluting’ rate. 
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The CVWC formulation results from the species concentration 
definition of Cj = nj/V, leading to the default kinetic model:

1 ( / , ) ( , , )
( ) 1

nrdn j s r V t h tij i jV t dt i
= =∑
=

n k, C k
 ,

( / )
( / , ) ( , , )

1

nrd n V dCj j s r V t h tij i jdt dt i
= = =∑

=
n k, C k

  ........(1)                         

Where: Cj = (cell-)species j concentration; V = system (cell) 
volume; nj = species j number of moles; rj = j-th reaction rate; 
s(i,j) = stoichiometric coefficient of the species “j” (individual 
or lumped) in the reaction “i”; t = time; j= 1,…,ns = number of 
cell species (individual or lumped); k = rate constant vector; I= 
1,…,nr = number of reactions. The above formulation assumes 
a homogeneous volume with no inner gradients or species 
diffusion resistance. The used reaction rate expressions for the 
metabolic reactions are usually those of extended Michaelis-
Menten or Hill type. Being very over-parameterized and strongly 
nonlinear, parameter estimation of such models in the presence 
of multiple constraints translates into a mixed integer nonlinear 
progeamming problem (MINLP) difficult to be solved because the 
searching domain is not convex [3]. 

Such a CVWC dynamic model might be satisfactory for 
modelling many cell subsystems, but not for an accurate 
modelling of cell GRC and holistic cell properties under perturbed 
conditions, or the division of cells, by distorting very much or 
even misrepresenting the prediction results, as exemplified by 
[1]. 

o  As an alternative, Maria [1,8] promoted over the last 15 
years the holistic variable-volume whole-cell (VVWC) modelling 
framework by explicitly including in the model constraint 
equations accounting for the cell-volume growth and by 
preserving the same cell-osmotic pressure, while the continuous 
ODE model was re-written either in terms of species moles or of 
species concentrations, as following [1]:

d C d n d n1 1j j jDC ; rj jd t V d t V d t
= − =

 ;

(j=1,..,no. of species),

Where:

D=d(In(V))/dt ,    ................... (2)

Because:

( )( ) ( )
d C n d n d nd ln Vd 1 1j j j jC DC h C,k ,tj j jd t d t V V d t d t V d t

 
 = = − = − =
 
 

 
                                                                                                           

............ (3)

Where: V=cell volume (in fact cytosol volume); nj=species j 
number of moles; rj=j-th reaction rate; D = cell-content dilution 
rate, i.e. cell-volume logarithmic growing rate; species inside the 
cell are considered individually or lumped; t=time. The (2-3) 
mass-balance formulation is that given by Aris [65] for the (bio) 
chemical reacting systems of variable-volume. 

In the VVWC formulation of the cell dynamic model, an 

additional constraint must be also considered to preserve the 
system isotonicity (constancy of the osmotic pressure p) under 
isothermal conditions. This constraint should be considered 
together with the ODE model (2-3), that is the Pfeiffers’ law of 
diluted solutions [66] adopted and promoted by Maria [1,8]:

( ) ( )
nsRTV t n tjj 1p

= ∑
=

 ............. (4)

Which, by derivation and division with V leads to [1]:

dnns1 dV RT 1 jD
V dt V dtjp

    = = ∑      

  ................. (5)

In the above relationships, T=absolute temperature, and R = 
universal gas constant, V=cell (cytosol) volume. As revealed by 
the Pfeffer’s law eqn. (4) in diluted solutions [66], and by the 
eq. (5), the volume dynamics is directly linked to the molecular 
species dynamics under isotonic and isothermal conditions. 

Consequently, the cell dilution D results as a sum of reacting 
rates of all cell species (individual or lumped). The (RT/p) 
term can be easily deducted in an isotonic cell system, from the 
fulfilment of the following invariance relationship derived from 
(4):

( ) 1 1( ) ( )
1 ( )

1 1 1

nsRT RT V tV t n t constantj ns ns nsj n t C Cj j jo
j j j

= ⇒ = = = =∑
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= = =

 
 .........(6)

As another observation, from (5) it results that the cell 
dilution is a complex function D(C,k) being characteristic to each 
cell and its environmental conditions.

Relationships (5-6) are important constraints imposed to the 
VVWC cell model (2-3), eventually leading to different simulation 
results compared to the CVWC cell kinetic models that neglect the 
cell volume growth and isotonic effects (see an example in [1]).

On the contrary, application of the default classical CVWC ODE 
kinetic models of eqn. (1) type with neglecting the isotonicity 
constraints presents a large number of inconveniences, related to 
ignoring lots of cell properties (discussed in detail in [1]), that is: 

a.	 The influence of the cell ballast in smoothing the 
homeostasis perturbations; 

b.	 The secondary perturbations transmitted via cell 
volume following a primary perturbation; 

c.	 The more realistic evaluation of GERM regulatory 
performance indices (P.I.-s), 

d.	 The more realistic evaluation of the recovering/
transient times after perturbations; 

e.	 Loss of the intrinsic model stability; 

f.	 Loss of the self-regulatory properties after a dynamic 
perturbation, etc. 
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Figure 8: The variable cell-volume whole-cell (VVWC) 
dynamic modelling framework and its basic hypotheses [1,8].

The basic equations and hypotheses of a VVWC model are 
presented in Figure 8. Even if all cell regulation mechanisms 
are not fully understood, metabolic regulation at a low-level 
is generally better clarified. Based on that, conventional 
(deterministic) dynamic models based on ODE kinetics using 
continuous variables, approached in this paper, based on a 
mechanistic description of cell reactions taking place among 
individual species [ including proteins, mRNA, DNA, transcription 
factors TF-s, intermediates, etc.] proved to be a convenient route 
to analyse continuous metabolic/regulatory processes and 
perturbations. When systems are too large or poorly understood, 
coarser and more phenomenological kinetic models may be 
postulated (e.g. protein complexes, metabolite channelling, 
etc.). In dynamic models, only essential reactions are retained, 
species and reactions often being included as lumps, the model 
complexity depending on measurable variables and available 
information. Such reduced VVWC kinetic models can be useful to 

analyse the regulatory cell-functions, and the treatment of both 
stationary and dynamic perturbations, the cell cycles, oscillatory 
metabolic paths, and lot of cell biosyntheses related to the central 
carbon metabolism [1], by reflecting the species interconnectivity 
or perturbation effects on cell growth. 

Modular Modelling of Genetic Regulatory Circuits

One of the very successfully application of VVWC 
deterministic models with continuous variables is those of 
simulating the regulatory properties of the individual gene 
expression regulatory modules (GERM), and of the genetic 
regulatory circuits (GRC) comprising a certain number of linked 
GERM-s ( no more than 23-25 [13]). A review of the systematic 
and comprehensive approaches in modelling the dynamics of the 
GRC-s based on VVWC deterministic models and bio-chemical 
engineering concepts and principles was presented by Maria in 
his work (Figure 9) [1].

Figure 9: The cover of the ebook of Maria [1], https://
juniperpublishers.com/ebook-info.php.

Why the GRC are important to be understood and simulate 
their properties? That is because the cell core metabolism is 
ensured by the optimized GERM-s and GRC-s that maintain the 
optimized protein (enzymes) synthesis and, thus, a balanced 
cell metabolism and an equilibrated cell growth despite the 
continuous perturbations in the environment, by also ensuring the 
cell evolution and competitiveness eventually by gene mutations 
[3]. It is here to mention only some of the GRC functions:

a.	 Cell metabolism regulation via hierarchically organized 
GRC (key-proteins being the regulatory nodes),

b.	 Sustain cell homeostasis, and a balanced cell growth, 
under variable environmental conditions (nutrients, substrates),

c.	 Preserve the holistic and local GRC regulatory 
properties,

i.	 Ensure Self-regulation of cell Self-replication, 

ii.	 Ensure fast cell response to environmental 
perturbations,

iii.	 Ensure fast metabolic reactions with low level of 
intermediates,

iv.	 Ensure optimized metabolic fluxes (stationary reaction 
rates),
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v.	 Ensure quick recovery of QSS (homeostasis) after a 
dynamic (impulse-like) environmental perturbation,

vi.	 Ensure quick transitions between QSS-s after a 
stationary (step-like) perturbations,

vii.	 Ensure a cascade-control of GERM and GRC regulation,

viii.	 Ensure a low QSS sensitivity vs. perturbations

And all these should be accomplished by fulfilling a certain 
number of constraints, that is:

o	 By using minimum amounts of substrates, and nutrients,

o	 By using minimum cell energy A(M)(D)TP, NAD(P)H, 
FADH(2),

o	 By maintaining quasi-constant key-species 
concentrations and output levels,

o	 By quickly adjusting the synthesis rates,

o	 By switching between alternative substrates, or 
development pathways by means of genetic switches.

Applications of GERM chain dynamic simulators in Synthetic 
Biology field are immediate, as long as GRC-s controlling the cell 
metabolism allows in-silico re-programming the cell metabolism 
by means of modified GRC properties leading to GMO of desirable 
characteristics. Among essential GRC structures used in this 
respect are to be mentioned the genetic-switches (decision-
making branch points between on/off states according to the 
presence of inducers), oscillators (cell systems evolving among 
two or several quasi-steady-states), signal/external stimuli 
amplifiers, amplitude filters, signal transduction circuits (specific 
treatment of external signals by controlled gene expression), etc. 
Modular construction of GRC-s must account for some individual 
(local) but also for holistic properties of the cell considered by 
the whole-cell modelling approach [1], such as: a tight control of 
gene expression (i.e. low-expression in the absence of inducers 
and accelerated expression in the presence of specific external 
signals); a quick dynamic response and high sensitivity to specific 
inducers [67].

The gene expression is a highly self and mutually regulated 
process catalysed by the produced enzymes/effectors. Simple 
generic representations of a gene expression regulatory module 
(GERM) are given in the Figure 10 (for a generic pair P/G self-
catalysed synthesis of the protein P and of its encoding gene G). 
Such representations include the essential nutrient lumps (NutP, 
NutG) used to obtain the protein and DNA precursor metabolites 
(MetP, MetG) respectively, and intermediates (R,R’) involved 
in the reactions controlling the transcriptional and translation 
steps of the P synthesis. The module nomenclature of such GERM 
models (Figure 11), proposed by [8,75] is those of [L1(O1)n1,…, 
Li(Oi)ni], and includes the assembled regulatory units Li(Oi)
ni. One unit i is formed by the component Li (e.g. enzymes or 
even genes G, P, M, etc.) at which regulatory element acts, and 
ni=0,1,2,… number of ‘effector’/(transcriptional factors(TF) 
species Oi (i.e. ‘effectors’ P, PP, PPPP, R, RR, RRRR, etc ) binding 
the ‘catalyst’ L. For instance, a [G(P)2] unit of Figure 11 includes 
two successive binding steps of G with the product P, that is G + P 

<===> GP + P <===> GPP, all intermediate species GP, GPP, being 
inactive catalytically, while the mass conservation law is all time 
fulfilled, i.e. [ ]

2
( )

0
G Pi

i
∑
=

  = constant. Such a representation accounts 
for the protein concentration diminishment due to the cell-
growth dilution effect, but could also include protein degradation 
by proteolysis. It is also to observe that such GERM models try 
to account essential properties of the gene expression, which is 
a highly self-/cross- regulated and mutually catalyzed process 
by means of the produced enzymes/effectors. As depicted in 
Figure 10 & 11 for the G(P)1 module case, the protein P synthesis 
is formally catalysed by its encoding gene G. In turn, P protein 
formally catalyse the G synthesis, but also modulate the G catalyst 
activity via the fast buffering reaction G + P <===> GP.

Figure 10: Simplified representations of a regulatory 
module (GERM) for a generic gene G expression (up-left, 
down) with perfectly coupled enzyme/regulator P expression. 
Down-right is a GERM of [G(P)1] type. Such GERM models 
are further used to construct various GRC models. Notations: 
In=inducer; AA= aminoacids; horizontal arrows indicate 
reactions; vertical arrows indicate catalytic actions; G= gene 
encoding protein P; M = mRNA; R, R’ = transcriptional factors 
(repressors); MetG=DNA precursor metabolites. The enzyme 
(protein P) interacts with the inducer In for controlling the 
transcription rate by means of feedback; +/ - positive or 
negative regulatory loops [1].
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Figure 11: Various types of GERM regulatory modules for 
protein synthesis [1]. Horizontal arrows indicate reactions; 
vertical arrows indicate catalytic actions; absence of a substrate 
or product indicates an assumed concentration invariance of 
these species.

The GERM model structure can be extended according to 
experimental information and accounting for individual or 
lumped species. For instance, at a generic level, in the simplest 
representation (Figure 10, up), the protein (P) synthesis rate 
can be adjusted by the ‘catalytic’ action of the encoding gene (G) 
(Figure 11, down). The catalyst activity is in turn allosterically 
regulated by means of ‘effector’ molecules (P, or PP; Figure 11) 
reversibly binding the catalyst G (DNA) or M (mRNA) via fast and 
reversible reactions (the so-called ‘buffering’ reactions). These 
simple regulation schemes can be further detailed in order to 
better reproduce the experimental data, with the expense of a 
supplementary effort to identify the module kinetic parameters. 
For instance, a two-step cascade control of P-synthesis model 
also includes the M=mRNA transcript encoding P (Figure 11, 
down). The effector (R), of which synthesis is controlled by the 
target protein P (Figure 10), can allosterically adjust the activity 
of G and M, i.e. the catalysts for the transcription and translation 
steps of the gene expression. In such a cascade scheme, the rate 
of the ultimate reaction is amplified, depending on the number 
of cascade levels and catalysis rates. More complex regulatory 
modules have been elaborated [1], and used in developing 
genetic regulatory circuits (GRC) following a similar route to 
‘translate’ from the ‘language’ of molecular biology to that of 
mechanistic chemistry, by preserving the structural hierarchy 
and component functions. Once elaborated, such a modular 
structure can be modelled by using a continuous variable ODE 
kinetic model under a VVWC framework, and then analysed as 
functional efficiency by means of some quantitative performance 
indices (P.I.-s) below shortly described.

As the cell regulatory systems are module-based organized, 
complex feed-back and feed-forward loops are employed for 
self- or cross-activation/repression of interconnected GERM-s, 
leading to different interaction alternatives (directly/inversely, 

perfect/incomplete, coupled/uncoupled connections) of a gene 
with up to 23-25 other genes.” [13], to ensure the key-species 
homeostasis, holistic and local regulatory properties of the 
enzymatic reactions. While Maria and others [1] used reduced 
GERM structures of 10-14 reactions, that ensures a satisfactory 
trade off between model simplicity and its predictive quality [67], 
more sophisticated constructions are proposed in the literature 
[1,20], such as the GRC controlling the lac operon expression in 
E. coli, including 40 reactions and 27 species (reduced model) or 
70 reactions and 50 species (extended model) [25]. Eventually, 
the advantage of such a modular approach is the possibility to 
adapt the model size according to the available information, or to 
use the same GERM structure to model several gene expressions. 
Modular approach can also be useful in simulating the hierarchical 
organization of the cell regulatory networks.

As discussed by Maria [1,8], fast buffering reactions, like G 
+ P <===> GP, are close to equilibrium and have little effect on 
metabolic control coefficients. As a consequence, rate constants 
of such rapid reactions are much higher than those of the core 
synthesis and dilution rates [1]. By contrast to CVWC modelling, 
the mechanistic based GERM models [1] in a VVWC framework 
seem to be more robust, flexible and easily adaptable to different 
case studies (examples in [1]). The model rate constants and 
some unknown species concentrations are estimated from 
solving the nonlinear ODE model equations written for the quasi-
stationary conditions (homeostasis) [1], by using the measured 
species stationary concentrations, with also imposing some 
optimal properties of the cell system [1]. The GERM regulatory 
properties (and P.I.) are defined for two types of environmental 
(in a nutrient) or internal (in a metabolite, protein) perturbations 
[1]: 

o	 Dynamic (impulse-like) perturbations. The GERM 
properties are: stability strength (minimum changes of the 
homeostasis vs. dynamic perturbations); dynamic efficiency 
(species minimum recovering times after an impulse 
perturbation); species interconnectivity (species minimum 
average and standard deviation of the recovering times after a 
dynamic perturbation); robustness (species minimum recovering 
times vs. rate constants); dynamic efficiency (species minimum 
recovering times after a dynamic perturbation);

o	 Stationary (step-like) perturbations. The GERM 
properties are: system stability strength (minimum changes of 
the homeostasis vs. stationary perturbations); responsiveness 
(minimum transition times toward a new steady-state); 
sensitivity (minimum sensitivity coefficients of homeostatic 
states vs. environmental variables); robustness (minimum 
sensitivity of the steady-state vs. rate constants);

Each of the mentioned regulatory attributes has also a 
mathematical formulation [1]. As proved by [1], when elaborating 
the kinetic model for whatever GERM, VVWC formulation by 
including the cell-volume growing rate is an essential issue to 
account for, due to several reasons. Beside, the simplified modular 
representation of GERM and GRC allow studying their regulatory 
properties and characterization of their performance indices 
(P.I.) by using the nonlinear system theory. Thus, by studying 
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the GERM properties of such simple formulations of Figure 11, 
several conclusions can be derived [1]: 

o	 The continuous dilution of the cell content, that is 
concentration decline due to the continuous increase of the 
denominator of C=n(t)/V(t), where C is the species concentration, 
n=species number of moles, V=cell volume, t= time; in spite of 
that, concentrations of key species remain constant because the 
numerator (copy numbers) increases at the same rate with the 
denominator; 

o	 The regulatory efficiency of the GERM increases with 
the number of effectors from its structure, that is: the number 
of buffering reactions G + P <===> GP, for the G(P)n GERM types 
(Figure 11), the number of buffering reactions G + PP <===> GPP, 
for the G(PP)n GERM types (Figure 11), the number of buffering 
reactions M + P <===> MP, for the [G(P)1;M(P)n] GERM types 
(Figure 11);

o	 For an efficient GERM, the species recovering 
trajectories after a dynamic perturbation toward the steady-state 
(in the phase diagram) are more direct and straight, thus less 
disturbing the cell metabolic reactions;

o	 The VVWC model representation correctly reproduces 
the system homeostasis, that is the species quasi-constant 
concentrations because both nominator and denominator of the 
fraction C=n(t)/V(t) are doubling at the same rate. By contrast, 
the CVWC model predictions are wrong, the predicted species 
concentration dynamics C(t) having the same shape and relative 
growth as with those of the copy numbers n(t) trajectories. 
On the contrary, application of the default classical CVWC ODE 
kinetic models of eqn. (1) type with neglecting the isotonicity 
constraints presents a large number of inconveniences, related to 
ignoring lots of cell properties (discussed in [1]): the influence of 
the cell ballast in smoothing the homeostasis perturbations; the 
secondary perturbations transmitted via cell volume following 
a primary perturbation; the more realistic evaluation of GERM 
P.I.-s, and of the recovering/transient times after perturbations; 
loss of the intrinsic model stability; loss of the self-regulatory 
properties after a dynamic perturbation, etc. 

o	 The system isotonicity constraint eq. (4-6) is an essential 
part of such GRC constructions to better reflect their properties. 
In such a VVWC formulation, all cell species should be considered 
(individually or lumped), because all species net reaction rates 
contribute to the cell volume increase (eq. 5). As the cell volume 
is doubling during the cell cycle, this continuous volume variation 
cannot be neglected. The system isotonicity imposes relatively 
short recovering rates for the key-species, and negligible for the 
other GERM species present in a large amount (lumped nutrients 
and metabolites). The system isotonicity is also responsible for 
the indirect effect of perturbations in concentrations on the 
cell-metabolism transmitted via induced changes in the volume 
growing rate (the so-called “secondary perturbation” following 
the first one);

o	 The mutual autocatalysis in the GERM constructions 
appears to interconnect the GERM key-components such that 
they are regulated more as a unit than would otherwise be the 

case. Interconnectivities (the degree to which a perturbation 
in one component influences others) may arise from a direct 
connection between components (e.g. when they are involved 
in the same chain of reactions), or from an indirect connection 
(via cell volume changes for an isotonic system). Our analysis 
indicates that mutual auto-catalysis is a particularly strong type 
of interaction that unifies the regulatory response, and they 
serve to “smooth” the effects of perturbations. It also suggests 
a way to quantitatively evaluate interconnectivities between all 
cellular components: each component could be perturbed one at 
a time, and recovery rates or some other measure of regulatory 
effectiveness could be evaluated for all components. The resulting 
relationships thus reflecting the holistic properties of the GRC-s;

o	 The ‘big volume’ or cell big content creates a ‘ballast’ 
effect, leading to an increased cell homeostatic (steady-state) 
concentrations ‘resistance’ vs. small perturbations in the level 
of some internal or external components. Thus, the whole-cell 
content ballast has an essential influence in smoothing the effect 
of internal/external perturbations on the system homeostasis.

o	 The GERM complexity when constructing a GRC is also 
important. It has been proved that cooperative linking of GERM 
(giving specific role and function of each protein inside the cell) 
is more efficient, because the system stability is strengthened, 
while species inter-connectivity is increased leading to a better 
treatment of perturbations. More important than the number 
of species considered in the individual GERM-s is the used of a 
cascade control of the GERM efficiency, that is [G(P)n; M(P)m] 
structures, dimeric TF-s (e.g. PP) instead of monomeric ones, and 
an allosteric enzyme activity control. 

o	 Maria [1, 76, 67] proved there exists an optimal level 
of the TF-s that are associated to the optimal holistic regulatory 
properties of the GRC (low sensitivity vs. external nutrients, but 
high vs. inducers).

o	 Cell GRC-s and, in particular, those involved in some 
protein synthesis regulation, are poorly understood. The modular 
approach of studying the regulation path, accounting for its 
structural and functional organization seems to be a promising 
route to be followed. Because a limited number of GERM types 
exist, individual GERM-s can be separately analysed, as above 
checked for efficiency in conditions that mimic the stationary and 
perturbed cell growing conditions. Efficient GERM (of regulatory 
indices of [1]) is then linked accordingly to certain rules to mimic 
the real metabolic process, by ensuring the overall GRC efficiency, 
system homeostasis, and protein individual functions. Module 
linking rules are not fully established, but some principles 
discussed in [1] should be fulfilled. The hierarchically organised 
network includes a large number of compounds with strong 
interactions inside a module and weaker interactions among 
modules; so that the whole cell system efficiency can be adjusted 
[76]. 

Some Examples of Modular Deterministic Dynamic 
Models

In this chapter some simple examples of using modular 
deterministic dynamic models are presented.
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A whole-cell model to simulate mercuric ion reduction 
by E. coli under stationary or perturbed conditions

One worthy example of applying VVWC models to adequately 
represent complex modular GRC-s, is the structured model 
proposed by Maria [68-70] to simulate the dynamics of the 
mer-operon expression in Gram-negative bacteria (like E. coli, 
Pseudomonas sp.) to uptake the mercury ions from wastewaters 
under various environmental conditions. The model was 
constructed and validated by using literature experimental 
data, but also qualitative information [77] on mer-operon 
characteristics.

Figure 12: The whole-cell model of Maria [68-70] in the 
VVWC approach used to simulate the reduction of Hg(2+) 

ions from environment to volatile Hg(0) in E. coli bacteria. 
The simplified reaction path includes: Two modules for 
mediated transport of Hg(2+) into cytosol (catalysed by the 
enzyme PT) and its reduction (catalysed by the enzyme PA); 
Five regulatory modules of mer operon expression including 
successive synthesis of the enzyme PR (the transcriptional 
activator of other protein synthesis), lumped PT permease, 
PA reductase, and of the control protein PD; One module for 
the lumped proteome P and genome G replication of [G(P)1] 
type. The regulatory system is placed in a growing cell, by 
mimicking the homeostasis and cell response to stationary 
and dynamic perturbations in the environmental [Hg2+]. The 
reductant NADPH and RSH are considered in excess into the 
cell. Figure adapted from [68-70].

Notations: P=lumped proteome; G=lumped genome; 
NutG, NutP = lumped nutrients used for gene and protein 
synthesis; MetG/MetP=lumped metabolome (DNA or protein 
precursor); P• = proteins; G• = genes; RSH= low molecular 
mass cytosolic thiol redox buffer (such as glutathione); 
perpendicular arrows on the reaction path indicate the 
catalytic activation, repressing or inhibition actions; absence 
of a substrate or product indicates an assumed concentration 
invariance of these species; ± positive or negative feedback 
regulatory loops.

Bacteria resistance to mercury is one of the most studied 
metallic-ion uptake and release process (see the review of [77] 
due to its immediate large-scale application for mercury removal 

from industrial wastewaters [78]. The bacteria response to the 
presence of toxic mercuric ions in the environment is apparently 
surprising; instead of building carbon- and energy-intensive 
disposal “devices” into the cell (like chelate-compounds) to 
“neutralize” the cytosolic mercury, and thus maintaining a 
tolerable level, a simpler and more efficient defending system is 
used. The metallic ions are catalytically reduced to the volatile 
metal, less toxic and easily removable from the cell by simple 
membranar diffusion. Such a process involves less cell resources 
and is favoured by the large content (millimolar concentrations) 
of low molecular-mass thiol redox buffers (RSH) able to bond and 
transport Hg(2+) in cytosol, and of renewable NAD(P)H reductants 
able to convert it into neutral metal. A genetic regulatory circuit 
responsible for the mer-operon expression controls the whole 
process, by including 4 lumped genes (denoted by GR,GT,GA,GD 
in Figure 12) of individual expression levels induced and adjusted 
according to the level of mercury and other metabolites into 
cytosol. The whole process is tightly cross- and self-regulated 
to hinder the import of too large amounts of mercury into the 
cell, which eventually might lead to the blockage of cell resources 
(RSH, NADPH, metabolites, proteins), thus compromising the 
whole cell metabolism. The GRC model includes four GERM-s of 
simple but effective [G(PP)1] type (Figure 12). 

One additional GERM module is added to the whole-cell 
model to simulate the lumped proteome P and genome G 
replication of [G(P)1] type. The regulatory system of 7 GERM-s is 
placed in a growing cell, by mimicking the E. coli cell homeostasis 
and its response to stationary and dynamic perturbations in 
the environmental Hg(2+). The reductant NADPH and RSH are 
considered in excess into the cell. 

In-silico design of a genetic modified E. coli cell to 
concomitantly maximize the production of biomass 
and succinate

Beside simulation of cell GRC-s, one of the objectives of the 
structured deterministic modular cell simulators is to identify 
genome modifications leading to the improvement of some of the 
cell characteristics.

For instance, Maria [71] used a reduced E. coli cell whole-
cell reduced dynamic model from literature including 95 
reactions and 72 metabolites (Figure 13), obtained by the 
reduction of an extended deterministic model of 720 reactions 
and 436 metabolites to in-silico determine what genes should 
be removed (the so-called ‘gene knockout’ procedure) to realize 
the maximization of both biomass and succinate production. 
The optimization problem has been solved by using a mixed 
integer nonlinear programming method (MINLP) [71]. Being an 
optimization problem with two contrary objectives, an elegant 
option is to obtain the set of Pareto optimal solutions, also called 
Pareto front for the case of at least two adverse objectives. A Pareto 
solution is one where any improvement in one objective can 
only take place at the cost of another objective. The Pareto-front 
procedure was applied by also accounting for the stoichiometric 
constraints. The problem presents multiple solutions indicating 
concomitant removal of 2-4 genes (indicated in parentheses in 
the down-right plot of Figure 13, together with the Pareto-front). 
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Figure 13: In-silico design of a genetic modified E. coli cell to concomitantly maximize the production of biomass 
and succinate (the Pareto-optimal front method, below-right). In the parentheses are the deleted gene numbers 
from the genome (see the corresponding reaction in the left scheme). The used structured reduced model is those of 
Edwards and Palsson [72]. See the computing details in [71].

In-silico study of glycolytic oscillations occurrence in 
E. coli cell by using a reduced modular deterministic 
model 

To in-silico design GMO it is indispensable to dispose of a 
valuable whole-cell simulator of the central carbon metabolism. 
The central carbon metabolism (CCM, see KEGG [34]) includes: 
the phosphotranspherase (PTS) system for the glucose (Glc) 
membranar import into the cell; the glycolysis (transformation of 
Glc in pyruvate Pyr); the pentose phosphate pathway (PPP, which 
is a metabolic pathway taking place in parallel to the glycolysis; 
it generates the co-factor NADPH and pentoses as well as ribose-
5-phosphate, which is one of the precursors for the synthesis of 
nucleotides); the tricarboxylic acid (TCA, or Krebs) cycle, which 
is a series of tightly controlled enzymatic reactions used by all 
aerobic organisms to release stored energy through the oxidation 
of acetyl- coenzyme A derived from carbohydrates, fats, and 
proteins into CO2 and chemical energy in the form of adenosine 
triphosphate (ATP). In addition, the cycle provides precursors 
of certain amino acids, as well as the reducing agent NADH that 
are used in numerous other biochemical reactions [79-82]. Its 

central importance to many biochemical pathways suggests that 
it was one of the earliest established components of the cellular 
metabolism and may have originated abiogenically [83].

One of the most studied modules of the CCM is the glycolysis. 
In this context, modelling bacteria glycolysis dynamics is a 
classical subject but still of high interest, allowing in silico 
design of GMO with desirable ‘motifs’ of practical applications 
in the biosynthesis industry, environmental engineering, and 
medicine. By using a reduced deterministic kinetic model 
(denoted by mTRM in Figure 14, right), obtained from reducing 
the Chassagnole et al. [73] model (Figure 14, left), Maria [21] 
has simulated the conditions leading to the occurrence of a 
stable oscillating glycolysis in the E. coli cells (experimentally 
highlighted by Madsen et al. [79]). 

Autonomous oscillations of the glycolytic intermediates’ 
concentrations reflect the dynamics of control and regulation 
of this major catabolic pathway, and the phenomenon has been 
reported in a broad range of cell types [79]. Understanding 
glycolytic oscillations might therefore prove crucial for our 
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general understanding of the regulation of metabolism and the 
interplay among different parts of metabolism as illustrated, for 
instance, by the hypothesis that glycolytic oscillations play a role 

in complex pulsatile insulin secretion. The key question in this 
context is the mechanism(s) of the oscillations but, despite much 
work over the last 40 years, it remains unsettled. 

Figure 14: In-silico study of glycolytic oscillations occurrence in E. coli cell by using the mTRM model of Maria [21] (right) 
obtained by reducing the Chassagnole et al. [73].

According to Franck [74], spontaneous occurrence of self-
sustained oscillations in chemical systems is due the coupled 
actions of at least two simultaneous processes (Figure 16). 
Oscillations sourced in a so-called “oscillation node” (that is 
a chemical species, or a reaction), on which concomitant rapid 
positive (perturbing) and slow negative (recovering) regulatory 
loops act. Because the coupling action between the simultaneous 
processes is mutual, the total coupling effect actually forms closed 
feedback loops for each kinetic variable involved. There exists a 
well-established set of essential thermodynamic and kinetics 
prerequisites for the occurrence of spontaneous oscillations [74].

In the glycolytic system case, extensive experiments (Figure 
15, right plot, [79]) have revealed that self-sustained oscillations 
are reported in a broad range of cell types [79]. As revealed by 
Termonia & Ross [80] glycolytic oscillations occurrence is due 
to the antagonistic action of two processes on regulating the 

V2 reaction rate that converts F6P in FDP (Figure 15, left). The 
glycolytic oscillation occurrence and characteristics (period) 
are influenced by both external (environmental) and internal 
(genomic) factors, that is [81,82]: 

i.	 From one side it is the glucose (Glc) import driving 
force through the phosphotransferase (PTS)-system (Figure 15) 
regulated and triggered by the external concentration of glucose 
[Glc]ext and by the PEP and PYR levels; 

ii.	 However, the Glc import and conversion to PYR requires 
important amounts of regenerable ATP, and an enough rapid ATP 
to ADP conversion rate, as well as its quick regeneration; 

iii.	 On the other hand, limited A(MDT)P cell energy 
resources exist in the cell, which can slow-down the Glc import if 
the ATP use/regeneration is not working fast enough [82].
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Figure 15:  Chemical node inducing glycolytic oscillations [21]. +/ - denotes the feedback positive or negative regulatory 
loops. Glc=glucose; F6P= fructose-6-phosphate; FDP = fructose-1,6-biphosphate; V1-V3 = reaction rates belonging to the 
glycolysis reduced model (left) of Maria [21].

Figure 16:  Oscillation occurrence in chemical systems 
Franck [74]. ± denotes the feedback positive or negative 
regulatory loops. X is a generic species denoting the engine 
node.

Conclusions

As a general conclusion, the bio-chemical engineering 
principles and modelling rules are fully applicable to modelling 
cellular metabolic processes. This involves application of the 
classical modelling techniques (mass balance, thermodynamic 
principles), algorithmic rules, and nonlinear system control 
theory. The metabolic pathway representation with continuous 
and/or stochastic variables remains the most adequate and 
preferred representation of cell processes, the adaptable-size 
and structure of the lumped model depending on available 
information and model utilisation scope.

The cell process modular/structured modelling approach is 
computationally fully tractable. The deterministic model can be 
successfully integrated in semi-autonomous modular simulation 
platforms to study metabolic syntheses regulation properties. To 
be feasible, the cell lumped models must realize a suitable trade-
off between simplicity and model quality vs. physical meaning of 
(reaction, species) lumps. 
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GRC representations combining Reverse Engineering and 
Integrative Understanding [1,8] allows in-silico design of GRC 
inducing specific cell motifs of genetically modified micro-
organisms (GMO). Examples includes [1]: Genetic switches of 
adjustable certainty, sensitivity to exo-/endogeneous stimuli, 
responsivity, regulatory efficiency; Metabolism behavior of 
wild or cloned cells with plasmids, with potential applications 
in medicine, such as therapy of diseases (gene therapy), new 
devices based on cell-cell communicators, biosensors, production 
of vaccines, etc.

Even if the cell simulators still present lot of drawbacks 
and present a limited adequacy, they become more and more 
valuable tools in designing GMO with desirable characteristics, 
or for obtaining micro-organisms cloned with desirable plasmids 
with important applications in industry (new biotechnological 
processes, optimization of bioreactors, production of vaccines), 
or in medicine. As mentioned by G.E.P Box (Professor of statistics 
at the University of Wisconsin, and a pioneering the areas of 
quality control, time series analysis, design of experiments, and 
Bayesian inference): “All models are wrong, but some are useful.”
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